Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Cell Rep ; 43(3): 113897, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38493478

RESUMO

Chromatin structure is regulated through posttranslational modifications of histone variants that modulate transcription. Although highly homologous, histone variants display unique amino acid sequences associated with specific functions. Abnormal incorporation of histone variants contributes to cancer initiation, therapy resistance, and metastasis. This study reports that, among its biologic functions, histone H3.1 serves as a chromatin redox sensor that is engaged by mitochondrial H2O2. In breast cancer cells, the oxidation of H3.1Cys96 promotes its eviction and replacement by H3.3 in specific promoters. We also report that this process facilitates the opening of silenced chromatin domains and transcriptional activation of epithelial-to-mesenchymal genes associated with cell plasticity. Scavenging nuclear H2O2 or amino acid substitution of H3.1(C96S) suppresses plasticity, restores sensitivity to chemotherapy, and induces remission of metastatic lesions. Hence, it appears that increased levels of H2O2 produced by mitochondria of breast cancer cells directly promote redox-regulated H3.1-dependent chromatin remodeling involved in chemoresistance and metastasis.


Assuntos
Neoplasias da Mama , Histonas , Humanos , Feminino , Histonas/metabolismo , Cromatina , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Resistência a Múltiplos Medicamentos , Neoplasias da Mama/genética
2.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496419

RESUMO

Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that BMP signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hours after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.

3.
Sci Adv ; 10(9): eadh8493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416825

RESUMO

N-MYC (encoded by MYCN) is a critical regulator of hematopoietic stem cell function. While the role of N-MYC deregulation is well established in neuroblastoma, the importance of N-MYC deregulation in leukemogenesis remains elusive. Here, we demonstrate that N-MYC is overexpressed in acute myeloid leukemia (AML) cells with chromosome inversion inv(16) and contributes to the survival and maintenance of inv(16) leukemia. We identified a previously unknown MYCN enhancer, active in multiple AML subtypes, essential for MYCN mRNA levels and survival in inv(16) AML cells. We also identified eukaryotic translation initiation factor 4 gamma 1 (eIF4G1) as a key N-MYC target that sustains leukemic survival in inv(16) AML cells. The oncogenic role of eIF4G1 in AML has not been reported before. Our results reveal a mechanism whereby N-MYC drives a leukemic transcriptional program and provides a rationale for the therapeutic targeting of the N-MYC/eIF4G1 axis in myeloid leukemia.


Assuntos
Leucemia Mieloide Aguda , Humanos , Proteína Proto-Oncogênica N-Myc , Sobrevivência Celular/genética , Leucemia Mieloide Aguda/genética , Carcinogênese , Células-Tronco Hematopoéticas
4.
Res Sq ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352423

RESUMO

Objective As cohesin mutations are rarely found in MLL-rearranged acute myeloid leukemias, we investigated the potential synthetic lethality between cohesin mutations and MLL-AF9 using murine hematopoietic stem and progenitor cells. Results Contrary to our hypothesis, a complete loss of Stag2 or haploinsufficiency of Smc3 were well tolerated in MLL-AF9-expressing hematopoietic stem and progenitor cells. Minimal effect of cohesin subunit loss on the in vitro self-renewal of MLL-AF9-expressing cells was observed. Despite the differing mutational landscapes of cohesin-mutated and MLL fusion AMLs, previous studies showed that cohesin and MLL fusion mutations similarly drive abnormal self-renewal through HOXA gene upregulation. The utilization of a similar mechanism suggests that little selective pressure exists for the acquisition of cohesin mutations in AMLs expressing MLL fusions, explaining their lack of co-occurrence. Our results emphasize the importance of using genetic models to test suspected synthetic lethality and suggest that a lack of co-occurrence may instead point to a common mechanism of action between two mutations.

5.
Hypertension ; 81(2): 229-239, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031837

RESUMO

Essential hypertension, a multifaceted disorder, is a worldwide health problem. A complex network of genetic, epigenetic, physiological, and environmental components regulates blood pressure (BP), and any dysregulation of this network may result in hypertension. Growing evidence suggests a role for epigenetic factors in BP regulation. Any alterations in the expression or functions of these epigenetic regulators may dysregulate various determinants of BP, thereby promoting the development of hypertension. Histone posttranslational modifications are critical epigenetic regulators that have been implicated in hypertension. Several studies have demonstrated a clear association between the increased expression of some histone-modifying enzymes, especially HDACs (histone deacetylases), and hypertension. In addition, treatment with HDAC inhibitors lowers BP in hypertensive animal models, providing an excellent opportunity to design new drugs to treat hypertension. In this review, we discuss the potential contribution of different histone modifications to the regulation of BP.


Assuntos
Código das Histonas , Hipertensão , Animais , Histonas , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão Essencial , Processamento de Proteína Pós-Traducional , Epigênese Genética
6.
BMC Genomics ; 24(1): 371, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394518

RESUMO

BACKGROUND: A common feature of single-cell RNA-seq (scRNA-seq) data is that the number of cells in a cell cluster may vary widely, ranging from a few dozen to several thousand. It is not clear whether scRNA-seq data from a small number of cells allow robust identification of differentially expressed genes (DEGs) with various characteristics. RESULTS: We addressed this question by performing scRNA-seq and poly(A)-dependent bulk RNA-seq in comparable aliquots of human induced pluripotent stem cells-derived, purified vascular endothelial and smooth muscle cells. We found that scRNA-seq data needed to have 2,000 or more cells in a cluster to identify the majority of DEGs that would show modest differences in a bulk RNA-seq analysis. On the other hand, clusters with as few as 50-100 cells may be sufficient for identifying the majority of DEGs that would have extremely small p values or transcript abundance greater than a few hundred transcripts per million in a bulk RNA-seq analysis. CONCLUSION: Findings of the current study provide a quantitative reference for designing studies that aim for identifying DEGs for specific cell clusters using scRNA-seq data and for interpreting results of such studies.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas , Humanos , Perfilação da Expressão Gênica/métodos , Análise da Expressão Gênica de Célula Única , RNA-Seq , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos
7.
iScience ; 26(4): 106442, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37020964

RESUMO

Suppressor of cytokine signaling-1 (SOCS1) exerts control over inflammation by targeting p65 nuclear factor-κB (NF-κB) for degradation in addition to its canonical role regulating cytokine signaling. We report here that SOCS1 does not operate on all p65 targets equally, instead localizing to a select subset of pro-inflammatory genes. Promoter-specific interactions of SOCS1 and p65 determine the subset of genes activated by NF-κB during systemic inflammation, with profound consequences for cytokine responses, immune cell mobilization, and tissue injury. Nitric oxide synthase-1 (NOS1)-derived nitric oxide (NO) is required and sufficient for the displacement of SOCS1 from chromatin, permitting full inflammatory transcription. Single-cell transcriptomic analysis of NOS1-deficient animals led to detection of a regulatory macrophage subset that exerts potent suppression on inflammatory cytokine responses and tissue remodeling. These results provide the first example of a redox-sensitive, gene-specific mechanism for converting macrophages from regulating inflammation to cells licensed to promote aggressive and potentially injurious inflammation.

9.
Cancers (Basel) ; 15(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36900239

RESUMO

Myeloid sarcomas (MS), commonly referred to as chloromas, are extramedullary tumors of acute myeloid leukemia (AML) with varying incidence and influence on outcomes. Pediatric MS has both a higher incidence and unique clinical presentation, cytogenetic profile, and set of risk factors compared to adult patients. Optimal treatment remains undefined, yet allogeneic hematopoietic stem cell transplantation (allo-HSCT) and epigenetic reprogramming in children are potential therapies. Importantly, the biology of MS development is poorly understood; however, cell-cell interactions, epigenetic dysregulation, cytokine signaling, and angiogenesis all appear to play key roles. This review describes pediatric-specific MS literature and the current state of knowledge about the biological determinants that drive MS development. While the significance of MS remains controversial, the pediatric experience provides an opportunity to investigate mechanisms of disease development to improve patient outcomes. This brings the hope of better understanding MS as a distinct disease entity deserving directed therapeutic approaches.

12.
13.
Leukemia ; 36(8): 2032-2041, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35778533

RESUMO

Acute myeloid leukemia (AML) is driven by mutations that occur in numerous combinations. A better understanding of how mutations interact with one another to cause disease is critical to developing targeted therapies. Approximately 50% of patients that harbor a common mutation in NPM1 (NPM1cA) also have a mutation in the cohesin complex. As cohesin and Npm1 are known to regulate gene expression, we sought to determine how cohesin mutation alters the transcriptome in the context of NPM1cA. We utilized inducible Npm1cAflox/+ and core cohesin subunit Smc3flox/+ mice to examine AML development. While Npm1cA/+;Smc3Δ/+ mice developed AML with a similar latency and penetrance as Npm1cA/+ mice, RNA-seq suggests that the Npm1cA/+; Smc3Δ/+ mutational combination uniquely alters the transcriptome. We found that the Rac1/2 nucleotide exchange factor Dock1 was specifically upregulated in Npm1cA/+;Smc3Δ/+ HSPCs. Knockdown of Dock1 resulted in decreased growth and adhesion and increased apoptosis only in Npm1cA/+;Smc3Δ/+ AML. Higher Rac activity was also observed in Npm1cA/+;Smc3Δ/+ vs. Npm1cA/+ AMLs. Importantly, the Dock1/Rac pathway is targetable in Npm1cA/+;Smc3Δ/+ AMLs. Our results suggest that Dock1/Rac represents a potential target for the treatment of patients harboring NPM1cA and cohesin mutations and supports the use of combinatorial genetics to identify novel precision oncology targets.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Animais , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Medicina de Precisão , Fatores de Transcrição/genética , Proteínas rac de Ligação ao GTP
15.
Yale J Biol Med ; 95(1): 45-56, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35370486

RESUMO

Successful hematopoietic cell transplantation (HCT) depends on rapid engraftment of the progenitor and stem cells that will reestablish hematopoiesis. Rap1A and Rap1B are two closely related small GTPases that may affect platelet and neutrophil engraftment during HCT through their roles in cell adhesion and migration. ß-adrenergic signaling may regulate the participation of Rap1A and Rap1B in engraftment through their inhibition or activation. We conducted a correlative study of a randomized controlled trial evaluating the effects of the nonselective ß-antagonist propranolol on expression and prenylation of Rap1A and Rap1B during neutrophil and platelet engraftment in 25 individuals receiving an autologous HCT for multiple myeloma. Propranolol was administered for 1 week prior to and 4 weeks following HCT. Blood was collected 7 days (baseline) and 2 days (Day -2) before HCT, and 28 days after HCT (Day +28). Circulating polymorphonuclear cells (PMNC) were isolated and analyzed via immunoblotting to determine levels of prenylated and total Rap1A versus Rap1B. Twelve participants were randomized to the intervention and 13 to the control. Rap1A expression significantly correlated with Rap1B expression. Rap1B expression significantly correlated with slower platelet engraftment; however, this association was not observed in the propranolol-treated group. There were no significant associations between neutrophil engraftment and Rap1A or Rap1B expression. Post hoc exploratory analyses did not reveal an association between social health variables and Rap1A or Rap1B expression. This study identifies a greater regulatory role for Rap1B than Rap1A in platelet engraftment and suggests a possible role for ß-adrenergic signaling in modulating Rap1B function during HCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Propranolol , Adrenérgicos , Humanos , Propranolol/farmacologia , Transdução de Sinais/fisiologia , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
16.
iScience ; 25(4): 104098, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35391828

RESUMO

Human cytomegalovirus (HCMV) is a betaherpesvirus that can cause severe birth defects including vision and hearing loss, microcephaly, and seizures. Currently, no approved treatment options exist for in utero infections. Here, we aimed to determine the impact of HCMV infection on the transcriptome of developing neurons in an organoid model system. Cell populations isolated from organoids based on a marker for infection and transcriptomes were defined. We uncovered downregulation in key cortical, neurodevelopmental, and functional gene pathways which occurred regardless of the degree of infection. To test the contributions of specific HCMV immediate early proteins known to disrupt neural differentiation, we infected NPCs using a recombinant virus harboring a destabilization domain. Despite suppressing their expression, HCMV-mediated transcriptional downregulation still occurred. Together, our studies have revealed that HCMV infection causes a profound downregulation of neurodevelopmental genes and suggest a role for other viral factors in this process.

17.
Front Bioeng Biotechnol ; 10: 823642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252132

RESUMO

Pulmonary artery (PA) pressure increases during lung growth after unilateral pneumonectomy (PNX). Mechanosensitive transcriptional co-activator, yes-associated protein (YAP1), in endothelial cells (ECs) is necessary for angiogenesis during post-PNX lung growth. We investigate whether increases in PA pressure following PNX control-angiogenesis through YAP1. When hydrostatic pressure is applied to human pulmonary arterial ECs (HPAECs), the expression of YAP1, transcription factor TEAD1, and angiogenic factor receptor Tie2 increases, while these effects are inhibited when HPAECs are treated with YAP1 siRNA or YAP1S94A mutant that fails to bind to TEAD1. Hydrostatic pressure also stimulates DNA synthesis, cell migration, and EC sprouting in HPAECs, while YAP1 knockdown or YAP1S94A mutant inhibits the effects. Gene enrichment analysis reveals that the levels of genes involved in extracellular matrix (ECM), cell adhesion, regeneration, or angiogenesis are altered in post-PNX mouse lung ECs, which interact with YAP1. Exosomes are known to promote tissue regeneration. Proteomics analysis reveals that exosomes isolated from conditioned media of post-PNX mouse lung ECs contain the higher levels of ECM and cell-adhesion proteins compared to those from sham-operated mouse lung ECs. Recruitment of host lung ECs and blood vessel formation are stimulated in the fibrin gel containing exosomes isolated from post-PNX mouse lung ECs or pressurized ECs, while YAP1 knockdown inhibits the effects. These results suggest that increases in PA pressure stimulate angiogenesis through YAP1 during regenerative lung growth.

18.
Am J Hematol ; 97(5): 613-622, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35180323

RESUMO

Survival outcomes for relapsed/refractory pediatric acute myeloid leukemia (R/R AML) remain dismal. Epigenetic changes can result in gene expression alterations which are thought to contribute to both leukemogenesis and chemotherapy resistance. We report results from a phase I trial with a dose expansion cohort investigating decitabine and vorinostat in combination with fludarabine, cytarabine, and G-CSF (FLAG) in pediatric patients with R/R AML [NCT02412475]. Thirty-seven patients enrolled with a median age at enrollment of 8.4 (range, 1-20) years. There were no dose limiting toxicities among the enrolled patients, including two patients with Down syndrome. The recommended phase 2 dose of decitabine in combination with vorinostat and FLAG was 10 mg/m2 . The expanded cohort design allowed for an efficacy evaluation and the overall response rate among 35 evaluable patients was 54% (16 complete response (CR) and 3 complete response with incomplete hematologic recovery (CRi)). Ninety percent of responders achieved minimal residual disease (MRD) negativity (<0.1%) by centralized flow cytometry and 84% (n = 16) successfully proceeded to hematopoietic stem cell transplant. Two-year overall survival was 75.6% [95%CI: 47.3%, 90.1%] for MRD-negative patients vs. 17.9% [95%CI: 4.4%, 38.8%] for those with residual disease (p < .001). Twelve subjects (34%) had known epigenetic alterations with 8 (67%) achieving a CR, 7 (88%) of whom were MRD negative. Correlative pharmacodynamics demonstrated the biologic activity of decitabine and vorinostat and identified specific gene enrichment signatures in nonresponding patients. Overall, this therapy was well-tolerated, biologically active, and effective in pediatric patients with R/R AML, particularly those with epigenetic alterations.


Assuntos
Leucemia Mieloide Aguda , Linfoma , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Criança , Citarabina , Decitabina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Linfoma/tratamento farmacológico , Vorinostat
19.
Front Immunol ; 12: 667054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149703

RESUMO

Mouse models of human cancer provide an important research tool for elucidating the natural history of neoplastic growth and developing new treatment and prevention approaches. This is particularly true for multiple myeloma (MM), a common and largely incurable neoplasm of post-germinal center, immunoglobulin-producing B lymphocytes, called plasma cells, that reside in the hematopoietic bone marrow (BM) and cause osteolytic lesions and kidney failure among other forms of end-organ damage. The most widely used mouse models used to aid drug and immunotherapy development rely on in vivo propagation of human myeloma cells in immunodeficient hosts (xenografting) or myeloma-like mouse plasma cells in immunocompetent hosts (autografting). Both strategies have made and continue to make valuable contributions to preclinical myeloma, including immune research, yet are ill-suited for studies on tumor development (oncogenesis). Genetically engineered mouse models (GEMMs), such as the widely known Vκ*MYC, may overcome this shortcoming because plasma cell tumors (PCTs) develop de novo (spontaneously) in a highly predictable fashion and accurately recapitulate many hallmarks of human myeloma. Moreover, PCTs arise in an intact organism able to mount a complete innate and adaptive immune response and tumor development reproduces the natural course of human myelomagenesis, beginning with monoclonal gammopathy of undetermined significance (MGUS), progressing to smoldering myeloma (SMM), and eventually transitioning to frank neoplasia. Here we review the utility of transplantation-based and transgenic mouse models of human MM for research on immunopathology and -therapy of plasma cell malignancies, discuss strengths and weaknesses of different experimental approaches, and outline opportunities for closing knowledge gaps, improving the outcome of patients with myeloma, and working towards a cure.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Gamopatia Monoclonal de Significância Indeterminada/tratamento farmacológico , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Animais , Progressão da Doença , Humanos , Imunoterapia , Camundongos , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/patologia
20.
Sci Rep ; 11(1): 12386, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117281

RESUMO

Parenteral nutrition-associated cholestasis (PNAC) significantly limits the safety of intravenous parenteral nutrition (PN). Critically ill infants are highly vulnerable to PNAC-related morbidity and mortality, however the impact of hepatic immaturity on PNAC is poorly understood. We examined developmental differences between fetal/infant and adult livers, and used human induced pluripotent stem cell-derived hepatocyte-like cells (iHLC) to gain insights into the contribution of development to altered sterol metabolism and PNAC. We used RNA-sequencing and computational techniques to compare gene expression patterns in human fetal/infant livers, adult liver, and iHLC. We identified distinct gene expression profiles between the human feta/infant livers compared to adult liver, and close resemblance of iHLC to human developing livers. Compared to adult, both developing livers and iHLC had significant downregulation of xenobiotic, bile acid, and fatty acid metabolism; and lower expression of the sterol metabolizing gene ABCG8. When challenged with stigmasterol, a plant sterol found in intravenous soy lipids, lipid accumulation was significantly higher in iHLC compared to adult-derived HepG2 cells. Our findings provide insights into altered bile acid and lipid metabolizing processes in the immature human liver, and support the use of iHLC as a relevant model system of developing liver to study lipid metabolism and PNAC.


Assuntos
Colestase/dietoterapia , Hepatócitos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/fisiopatologia , Nutrição Parenteral , Feminino , Humanos , Recém-Nascido , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...